

Add full-text to your application with Hibernate Search

www.thoughts-on-java.org

Hibernate Search provides an easy way to add full-text search to
your application. It uses Apache Lucene or Elasticsearch to provide
full-text search capabilities and integrates them with Hibernate
ORM. It updates the search indexes transparently and provides a
query DSL for full-text queries.

Project setup

Add Hibernate Search to your project
The first thing you need to do, if you want to add Hibernate Search to
your project is to add the required libraries to your project. These are
the hibernate-search-orm.jar and if you want to use it with JPA also
the hibernate-entitymanager.jar.

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-search-orm</artifactId>

 <version>5.6.0.Final</version>

</dependency>

<dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>${hibernate.version}</version>

</dependency>

http://www.thoughts-on-java.org/

Add full-text to your application with Hibernate Search

www.thoughts-on-java.org

Configuration
You don’t need to provide any configuration when you start to use
Hibernate Search. The default values provide a good starting point
for most standard applications.

But I recommend to use the filesystem DirectoryProvider in the
beginning. It stores the Lucene indexes in the file system which
allows you to easily inspect them and get a better understanding of
your system. When you’re familiar with Hibernate Search and
Lucene, you should also have a look at the other supported
DirectoryProviders.

<persistence>

 <persistence-unit name="my-persistence-unit">

 ...

 <properties>

 ...

 <property name =

"hibernate.search.default.directory_provider"

value="filesystem"/>

 <property name =

"hibernate.search.default.indexBase"

value="./lucene/indexes"/>

 </properties>

 </persistence-unit>

</persistence>

http://www.thoughts-on-java.org/
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory

Add full-text to your application with Hibernate Search

www.thoughts-on-java.org

Index entity attributes
Indexing one of your entities requires 2 things:

1. You need to annotate the entitiy with @Indexed to tell
Hibernate Search to index the entity.

2. You need to annotate the fields you want to index with the
@Field annotation. This annotation also allows you to define
how the attributes will be indexed. I will get into more detail
about that in one of the following blog posts.

@Indexed

@Entity

public class Tweet {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id", updatable = false, nullable = false)

 private Long id;

 @Column

 @Field

 private String userName;

 @Column

 @Field

 private String message;

 …

}

http://www.thoughts-on-java.org/

Add full-text to your application with Hibernate Search

www.thoughts-on-java.org

Perform a simple full-text search
Similar to a search on Google, you can now use Hibernate Search to
do a full-text search on the messages of these tweets. The following
code snippet shows a query that searches for the words “validate”
and “Hibernate” in the messages of the tweets.

In the first step, you need to get a FullTextEntityManager. It extends
the EntityManager interface with full-text search capabilities and
allows you to create a QueryBuilder for the entity class you’re
searching. In this example, I create a QueryBuilder for my Tweet
entity. You then use the QueryBuilder to define your query. I want to
do a keyword search on the message field. That searches the index
with message attributes for one or more words. In this case, I’m
searching for the words “validate” and “Hibernate”. Then I create a
query and provide it to the createFullTextQuery mehod.

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

FullTextEntityManager fullTextEm = Search.getFullTextEntityManager(em);

QueryBuilder tweetQb = fullTextEm.getSearchFactory()

.buildQueryBuilder()

.forEntity(Tweet.class)

.get();

Query fullTextQuery = tweetQb.keyword()

.onField(Tweet_.message.getName())

.matching("validate Hibernate")

.createQuery();

List<Tweet> results = fullTextEm

.createFullTextQuery(fullTextQuery, Tweet.class)

.getResultList();

http://www.thoughts-on-java.org/

Add full-text to your application with Hibernate Search

www.thoughts-on-java.org

This method returns a FullTextQuery interface which extends JPA’s
Query interface. And then I call the getResultList method to execute
the query and get a List of results.

Internally, this query gets executed in 2 steps: First Hibernate Search
uses the Lucene index to perform the full-text search and return the
primary keys of the matching entities. Then Hibernate ORM uses the
primary keys to selects the entities.

Similar to a Google search, this queries also returns documents that
contain only one of the search terms. But as you can see in the log
output, the Tweet with the message “How to automatically validate
entities with Hibernate Validator BeanValidation” received the better
ranking because it contained both search terms.

15:04:29,704 DEBUG SQL:92 - select this_.id as id1_0_0_, this_.message as

message2_0_0_, this_.postedAt as postedAt3_0_0_, this_.url as url4_0_0_,

this_.userName as userName5_0_0_, this_.version as version6_0_0_ from Tweet

this_ where (this_.id in (?, ?))

15:04:29,707 INFO TestSearchTweets:55 - Tweet [id=3, postedAt=2017-02-02

00:00:00.0, userName=thjanssen123, message=How to automatically validate

entities with Hibernate Validator BeanValidation, url=http://www.thoughts-on-

java.org/automatically-validate-entities-with-hibernate-validator/, version=0]

15:04:29,707 INFO TestSearchTweets:55 - Tweet [id=2, postedAt=2017-01-24

00:00:00.0, userName=thjanssen123, message=5 tips to write efficient queries

with JPA and Hibernate, url=www.thoughts-on-java.org/5-tips-write-efficient-

queries-jpa-hibernate/, version=0]

http://www.thoughts-on-java.org/

